

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 8855-8858

Tetrahedron Letters

Bieremoligularolide and eremoligularin, two novel sesquiterpenoids from *Ligularia muliensis*

Qiu-Hong Wu,^a Chun-Ming Wang,^b Sheng-Gao Cheng^a and Kun Gao^{a,*}

^aCollege of Chemistry and Chemical Engineering, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China ^bSchool of Life Sciences, Lanzhou University, Lanzhou 730000, China

> Received 19 July 2004; revised 8 September 2004; accepted 30 September 2004 Available online 14 October 2004

Abstract—From the roots of *Ligularia muliensis*, a novel bieremophilanolide and a new eremophilanolide have been isolated and their structures were elucidated by spectroscopic techniques, including HRMS, IR, UV, 1D-NMR, 2D-NMR, and CD spectra. © 2004 Elsevier Ltd. All rights reserved.

In our ongoing investigation of bioactive compounds from the Compositae plants we have studied the dried rhizomes of *Ligularia muliensis* found in mountainous areas in southwestern China. No medicinal use of *L. muliensis* has been reported but most of *Ligularia* plants have been used as folk remedies for their antibiotic, antiphlogistic, and antitussive activities¹ and many bioactive eremophilane-type sesquiterpene lactones have been found.^{2,3} We herein report the isolation and structural determination of a novel bieremophilanolide, bieremoligularolide (1) and a new eremophilanolide, eremoligularin (2) from the roots of *L. muliensis*, as well as their antitumor activities.

The dried rhizomes of *L. muliensis* were extracted successively with a mixed solvent of petroleum ether– Et_2O -acetone (1:1:1) and the extract (67.5g from 1975g dried rhizomes) was chromatographed on silica gel columns using a stepwise solvent gradient method and prep.TLC to give the two new sesquiterpenoids bieremoligularolide (1, 0.029% yield) and eremoligularin (2, 0.006% yield).

Compound 1 was a colorless crystalline material, mp 231–233 °C, $[\alpha]_D^{28}$ +92 (*c* 0.5, CH₃OH). A quasimolecular ion peak at *m*/*z* 712.4071 (M+NH₄)⁺ (calcd 712.4055) in

HRESIMS showed that the molecular formula was $C_{40}H_{54}O_{10}$. But the peak of the highest mass in its EIMS was at m/z 347 (base peak), which was one half of the molecular weight and its ¹³C NMR spectrum contained only 20 signals which were five CH₃, three CH₂, five CH, and seven C from DEPT spectrum. Thus compound 1 should be a molecule formed from two identical units⁴ and seven degrees of unsaturation per unit. The structure of this 'unit' was elucidated as follows: its IR spectrum exhibited strong α,β -unsaturated γ -lactone absorptions at 1771 and 1676 cm⁻¹. The ¹³C NMR and DEPT spectra at δ 172.1 (C), 157.7 (C), 125.3 (C), together with the UV absorption at λ_{max} (CH₃OH) 218nm, confirmed the presence of this lactone group. In ¹H NMR⁵ and ¹³C NMR (Table 1) there were signals of a tertiary methyl group $[\delta_{\rm H} 1.22 \text{ (s)}, \delta_{\rm C} 18.1 \text{ (CH}_3)]$, a secondary methyl group $[\delta_{\rm H} 1.01 \text{ (d}, J = 6.9 \text{ Hz}), \delta_{\rm C} 13.0$ (CH₃)] and an olefinic methyl group [$\delta_{\rm H}$ 1.80 (s), $\delta_{\rm C}$ 8.6 (CH₃)], which were characteristic of an eremophilanolide skeleton. In addition, this unit obviously had an angeloyl moiety from the ¹H NMR data,⁵ and IR spectrum confirmed the presence of the α,β -unsaturated ester group (1724 and 1648 cm⁻¹) and also showed an absorption of a hydroxyl group (3463 cm⁻¹). HMBC (Fig. 1) of 1 exhibited that the angeloyl and hydroxyl groups were at the C-6 and C-3, respectively. Other signals were unambiguously assigned by ${}^{1}H{-}^{1}H$ COSY, HMQC, and HMBC spectra. So the structure of the unit was determined.

The signal at $\delta_{\rm C}$ 89.1 (sp³ quarternary carbon) implied that the two identical units joined at C-8 and C-8'

Keywords: Compositae; *Ligularia muliensis*; Sesquiterpenoid; Bieremophilanolide; Eremophilanolide.

^{*} Corresponding author. Tel.: +86 0931 8912592; fax: +86 0931 8912582; e-mail: npchem@lzu.edu.cn

^{0040-4039/\$ -} see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.09.176

No.	1		No.	2	
	δC	DEPT		δC	DEPT
1,1′	22.0	CH_2	1	28.9	CH ₂
2,2'	28.4	CH_2	2	20.3	CH_2
3,3'	70.4	СН	3	29.7	CH_2
4,4′	41.4	СН	4	31.2	CH
5,5'	45.9	С	5	39.2	С
6,6′	78.1	СН	6	89.0	CH
7,7′	157.7	С	7	81.5	С
8,8'	89.1	С	8	212.7	С
9,9′	33.2	CH_2	9	40.1	CH_2
10,10′	38.3	СН	10	36.1	CH
11,11′	125.3	С	11	46.6	CH
12,12'	172.1	С	12	175.1	С
13,13′	8.6	CH ₃	13	9.2	CH ₃
14,14′	18.1	CH ₃	14	17.0	CH_3
15,15′	12.9	CH ₃	15	16.4	CH ₃
1″	165.4	С			
2″	127.1	С			
3″	139.9	СН			
4″	15.2	CH ₃			
5″	19.8	CH ₃			

Table 1. ¹³C NMR and DEPT data of compound 1 (acetone-*d*₆) and 2 (CDCl₃)^a

^a Spectra were recorded on a Varian Mercury-300 MHz spectrometer, chemical shifts (δ) are in ppm.

Figure 1. HMBC correlations found for 1 and 2.

positions and formed dimeric sesquiterpene lactones. Stereochemically, CH₃-14 and CH₃-15 were in β -orientations.⁶ The appearance of correlations between CH₃-14 and CH₃-15; CH₃-10 and H-14; and CH₃-10 and H-15 on NOE difference spectra indicated their *cis* relationship; namely, A/B was a *cis*-fused arrangement. The configurations of the angeloyl at C-6 and of the hydroxyl at C-3 were deduced to be β -orientated from NOESY, in which significant cross peaks between H-6 and H-4 α , and CH₃-15; H-3 and H-2 α , H-2 β , H-4 α ,

Figure 2. Key NOESY and NOE correlations detected for 1 and 2.

and CH₃-15 could be observed. The NOESY spectrum showed that the conformation of molecule is steroidal (Fig. 2), which was supported by the coupling pattern of H-3 α (quartet with $J_{3\alpha,2\alpha} = J_{3\alpha,2\beta} = J_{3\alpha,4\alpha} = 3$ Hz).⁷ Consequently the other half of the molecule at C-8 position must be β , which was the same direction as the angeloyl at C-6.⁷ This was further confirmed by ¹H NMR due to the absence of homoallylic coupling between H-6 and CH₃-13.⁶ Therefore the structure of bieremoligularolide was established as depicted in the formula **1**.

A possible biosynthetic pathway for the bieremoligularolide is shown in Scheme 1. A naturally occurring

Scheme 1. Plausible biosynthetic pathway for (1).

sesquiterpene lactone **3**, also obtained from the species by us, is perhaps the parent compound of this dimer.⁸

Compound **2** was a colorless crystal, mp 192–195 °C, $[\alpha]_{D}^{2B} - 8$ (*c* 0.89, CH₃OH). Its molecular formula C₁₅H₂₂O₄ was determined by HRESIMS, accounting for five degrees of unsaturation. The IR spectrum showed 3461 cm⁻¹ for a hydroxyl group, 1774 cm⁻¹ for a saturated γ -lactone, and 1709 cm⁻¹ for a ketone carbonyl. The ¹³C NMR and DEPT spectra (Table 1) disclosed an ester carbonyl group at δ 175.1 and an oxygenated methine carbon at δ 89.0, indicating the presence of a lactone ring. Besides, a ketone carbonyl at δ 212.7 and a quarternary carbon bearing a hydroxyl group at δ 81.5 could be observed. In the ¹H NMR spectrum,⁹ one tertiary and two secondary methyl signals were present at δ 1.15 (s), 0.84 (d, J = 7.0 Hz), 1.04 (d,

J = 7.6 Hz). These observations and ¹H–¹H COSY, HMBC (Fig. 1) suggested that **2** was an eremophilanolide derivative with 6,12-olide, 7-hydroxyl, and 8-oxo.

The relative stereostructure was determined by the NOESY and NOE difference spectra, in which the correlations between H-6 and CH₃-14; H-6 and CH₃-15; and H-6 and CH₃-13 were detected (Fig. 2). The absolute configuration was determined by its CD spectrum, in which a positive Cotton effect by the C-8 carbonyl group was shown at 292 nm ($\Delta \varepsilon$ +4.5) and a negative effect by the saturated γ -lactone at 216 nm ($\Delta \varepsilon$ -4.2). Application of the octant rule¹⁰ and lactone sector rule¹¹ to **2** indicated that the A/B ring of **2** was a *trans* arrangement, the lactone ring was *cis*-fused and in α -orientation and the hydroxyl was in β -orientation.^{12,13} Thus, the total structure was established as depicted in the formula **2**.

Cytotoxic activity of compounds **1** and **2** was assayed by SRB method against human leukemia cell (HL-60), human hepatoma cell (SMMC-7721) and human cervical carcinoma cell (HeLa). Compound **1** showed strong cytotoxicity: $IC_{50} = 5.5$, 16.1, and $8.9 \,\mu$ M against HL-60, SMMC-7721, and HeLa cells, whereas **2** showed no cytotoxicity against the above three cells ($IC_{50} > 100 \,\mu$ M).

Acknowledgements

This work was financed by the National Natural Science Foundation of China (No. 20372029 and 20021001-QT Program).

References and notes

- Jiangsu College of New Medicine. A Dictionary of the Traditional Chinese Medicines; Shanghai Science and Technology: Shanghai, 1977; p 7, 154, 549, 1152, 2349.
- 2. Wang, W. S.; Gao, K.; Jia, Z. J. J. Nat. Prod. 2002, 65, 714–717.
- Li, X. Q.; Gao, K.; Jia, Z. J. Planta Med. 2003, 69, 356– 360.
- Lin, Y. C.; Jin, T.; Wu, X. Y.; Huang, Z. Q.; Fan, J. S. J. Nat. Prod. 1997, 60, 27–28.
- 5. Compound 1: $C_{40}H_{54}O_{10}$ EIMS *m/z* 347, 264, 247, 229, 175, 124, 100, 83; IR: 3463, 1771, 1724, 1676, 1648 cm⁻¹; ¹H NMR (300 MHz, acetone-*d*₆): δ 1.01 (3H, d, *J* = 6.9 Hz, H-15), 1.22 (3H, s, H-14), 1.36 (1H, m, H-10), 1.62 (1H, dq, *J* = 10.2, 3 Hz, H-2 β), 1.71 (1H, m, H-2 α), 1.80 (3H, s, H-13), 1.83 (1H, m, H-1 β), 1.86 (1H, qd, *J* = 6.9, 3 Hz, H-4), 1.91 (1H, m, H-9 β), 1.92 (3H, dq, *J* = 7.2, 1.5 Hz, H-4"), 1.95 (3H, dq, *J* = 1.5, 1.5 Hz, H-5"), 2.26 (1H, m, H-1), 2.77 (1H, t, *J* = 10.6 Hz, H-9 α), 3.81 (1H, q, *J* = 3 Hz, H-3), 5.17 (1H, s, H-6), 6.21 (1H, qq, *J* = 7.2, 1.5 Hz, H-3").
- Moriyama, Y.; Takahasshi, T. Bull. Chem. Soc. Jpn. 1976, 49, 3196–3199.
- Tori, M.; Kawahara, M.; Sono, M. Phytochemistry 1998, 47, 401–409.
- Bagal, S. K.; Adlington, R. M.; Marquez, R.; Cowley, A. R.; Baldwin, J. E. *Tetrahedron Lett.* 2003, 44, 4993–4996.
- 9. Compound **2**: $C_{15}H_{22}O_4$ EIMS *m/z* 266 [M⁺], IR: 3461, 1774, 1709 cm⁻¹; ¹H NMR (300 MHz, CDCl₃): δ 0.84 (3H, d, *J* = 7.0 Hz, H-15), 1.04 (3H, d, *J* = 7.6 Hz, H-13), 1.15

(3H, s, H-14), 1.25-1.34 (5H, m, H-2, H-3, and H-4 overlapping), 1.50–1.65 (2H, m, H-1), 2.33 (1H, dd, J = 16.4, $3.6 \text{ Hz}, \text{H-9}\alpha$), 2.47 (1H, dd, $J = 16.4, 13.0 \text{ Hz}, \text{H-9}\beta$), 2.55 (1H, m, H-10), 3.01 (1H, q, J = 7.6 Hz, H-11), 3.93 (1H, s, OH), 4.62 (1H, s, H-6).

- 10. Moffitt, W.; Woodward, R. B.; Moscowitz, A.; Klyne, W.; Djerassi, C. J. Am. Chem. Soc. 1961, 83, 4013-4018.
- 11. Kagan, H. B. Stereochemistry II-Fundamentals and Methods: Dipole Moments, CD or ORD; Georg Thieme. Pub., 1977; pp 33–181. 12. Yaoita, Y.; Kikuchi, M. Chem. Pharm. Bull. **1996**, 44,
- 1731–1735.
- 13. Bardon, A.; Mitre, G. B.; Kamiya, N.; Toyota, M.; Asakawa, Y. Phytochemistry 2002, 59, 205-213.